Carbonate Petrography

Carbonate petrography is the study of limestones, dolomites and associated deposits under optical or electron microscopes greatly enhances field studies or core observations and can provide a frame of reference for geochemical studies.

25 strangest Geologic Formations on Earth

The strangest formations on Earth.

What causes Earthquake?

Of these various reasons, faulting related to plate movements is by far the most significant. In other words, most earthquakes are due to slip on faults.

The Geologic Column

As stated earlier, no one locality on Earth provides a complete record of our planet’s history, because stratigraphic columns can contain unconformities. But by correlating rocks from locality to locality at millions of places around the world, geologists have pieced together a composite stratigraphic column, called the geologic column, that represents the entirety of Earth history.

Folds and Foliations

Geometry of Folds Imagine a carpet lying flat on the floor. Push on one end of the carpet, and it will wrinkle or contort into a series of wavelike curves. Stresses developed during mountain building can similarly warp or bend bedding and foliation (or other planar features) in rock. The result a curve in the shape of a rock layer is called a fold.

Showing posts with label dating. Show all posts
Showing posts with label dating. Show all posts

Numerical age and geologic time

Dating Sedimentary Rocks? 

The mind grows giddy gazing so far back into the abyss of time. John Playfair (1747–1819),  British geologist who popularized the works of Hutton.


We have seen that isotopic dating can be used to date the time when igneous rocks formed and when metamorphic rocks metamorphosed, but not when sedimentary rocks were deposited. So how do we determine the numerical age of a sedimentary rock? We must answer this question if we want to add numerical ages to the geologic column. Geologists obtain dates for sedimentary rocks by studying cross-cutting relationships between sedimentary rocks and datable igneous or metamorphic rocks. For example, if we find a sequence of sedimentary strata deposited unconformably on a datable granite, the strata must be younger than the granite  (figure above). If a datable basalt dike cuts the strata, the strata must be older than the dike. And if a datable volcanic ash buried the strata, then the strata must be older than the ash.

The Geologic Time Scale 

Geologists have searched the world for localities where they can recognize cross-cutting relations between datable igneous  
rocks and sedimentary rocks or for layers of datable volcanic rocks inter-bedded with sedimentary rocks. By isotopically dating the igneous rocks, they have been able to provide numerical ages for the boundaries between all geologic periods. For example, work from around the world shows that the Cretaceous Period began about 145 million years ago and ended 65 million years ago. So the Cretaceous sandstone bed in first figure was deposited during the middle part of the Cretaceous, not at the beginning or end. 


The discovery of new data may cause the numbers defining the boundaries of periods to change, which is why the term numerical age is preferred to absolute age. In fact, around 1995, new dates on rhyolite ash layers above and below the Cambrian-Precambrian boundary showed that this boundary occurred at 542 million years ago, in contrast to previous, less definitive studies that had placed the boundary at 570 million years ago. Figure above shows the currently favoured numerical ages of periods and eras in the geologic column as of 2009. This dated column is commonly called the geologic time scale. 

What Is the Age of the Earth? 

During the 18th and 19th centuries, before the discovery of isotopic dating, scientists came up with a great variety of clever solutions to the question, “How old is the Earth?”—all of which have since been proven wrong. Lord William Kelvin, a 19th century physicist renowned for his discoveries in thermodynamics, made the most influential scientific estimate of the Earth’s age of his time. Kelvin calculated how long it would take for the Earth to cool down from a temperature as hot as the Sun’s, and concluded that this planet is about 20 million years old. Kelvin’s estimate contrasted with those being promoted by followers of Hutton, Lyell, and Darwin, who argued that if the concepts of uniformitarianism and evolution were correct, the Earth must be much older. They argued that physical processes that shape the Earth and form its rocks, as well as the process of natural selection that yields the diversity of species, all take a very long time. Geologists and physicists continued to debate the age issue for many years. The route to a solution didn't appear until 1896, when Henri Becquerel announced the discovery of radioactivity. Geologists immediately realized that the Earth’s interior was producing heat from the decay of radioactive material. This realization uncovered one of the flaws in Kelvin’s argument: Kelvin had assumed that no new heat was produced after the Earth first formed. Because radioactivity constantly generates new heat in the Earth, the planet has cooled down much more slowly than Kelvin had calculated and could be much older. The discovery of radioactivity not only invalidated Kelvin’s estimate of the Earth’s age, it also led to the development of isotopic dating. Since the 1950s, geologists have scoured the planet to identify its oldest rocks. Rocks younger than 3.85 Ga are fairly common. Rock samples from several localities (Wyoming, Canada, Greenland, and China) have yielded dates as old as 4.03 Ga. (Recall that “Ga” means “billion years ago.”) Individual clastic grains of the mineral zircon have yielded dates of up to 4.4 Ga, indicating that rock as old as 4.4 Ga did once exist. Isotopic dating of Moon rocks yields dates of up to 4.50 Ga, and dates on meteorites have yielded ages as old as 4.57 Ga. Geologists consider 4.57-Ga meteorites to be fragments of planetesimals like those from which the Earth first formed. Thus, these dates are close to the age of the Earth’s birth, for models of the Earth’s formation assume that all objects in the Solar System developed at roughly the same time from the same nebula. Why don’t we find rocks with ages between 4.03 and 4.57 Ga in the Earth’s crust? Geologists have come up with several ideas to explain the lack of extremely old rocks. One idea comes from calculations defining how the temperature of our planet has changed over time. These calculations indicate that during the first half-billion years of its existence, the Earth might have been so hot that rocks in the crust remained above the closure temperature for minerals, and isotopic clocks could not start “ticking.” Another idea comes from studies of cratering events on other moons and planets. These studies indicate that the inner planets were bombarded so intensely by meteorites at about 4.0 Ga that almost all crust formed earlier than 4.0 Ga was completely destroyed.

Picturing Geologic Time 

The number 4.57 billion is so staggeringly large that we can’t begin to comprehend it. If you lined up this many pennies in a row, they would make an 87,400-km-long line that would wrap around the Earth’s equator more than twice. Notably, at the scale of our penny chain, human history is only about 100 city blocks long. Another way to grasp the immensity of geologic time is to equate the entire 4.57 billion years to a single calendar year. On this scale, the oldest rocks preserved on Earth date from early February, and the first bacteria appear in the ocean on February 21. The first Shelly invertebrates appear on October 25, and the first amphibians crawl out onto land on November 20. On December 7, the continents coalesce into the super-continent of Pangaea. Birds and the ancestors of mammals  appear about December 15, along with the dinosaurs, and the Age of Dinosaurs ends on December 25. The last week of December represents the last 65 million years of Earth history, including the entire Age of Mammals. The first human-like ancestor appears on December 31 at 3  p.m., and our species, Homo sapiens, shows up an hour before midnight. The last ice age ends a minute before midnight, and all of recorded human history takes place in the last  30 seconds. To put it another way, human history occupies the last 0.000001% of Earth history. The Earth is so old that there has been more than enough time for the rocks and life forms of Earth to have formed and evolved.

How do we determine numerical age of Earth?

Numerical age determination

Geologists since the days of Hutton could determine the relative ages of geologic events, but they had no way to specify numerical ages (called “absolute ages” in older literature). Thus, they could not define a timeline for Earth history or determine the duration of events. This situation changed with the discovery of radioactivity. Simply put, radioactive elements decay at a constant rate that can be measured in the lab and can be specified in years. In the 1950s, geologists developed techniques for using measurements of radioactive elements to calculate the numerical ages of rocks. Geologists originally referred to these techniques as radiometric dating; more recently, this has come to be known as isotopic dating. The overall study of numerical ages is geochronology. Since the 1950s, isotopic dating techniques have steadily improved, and geologists have learned how to make very accurate measurements from very small samples. But the basis of the techniques remains the same, and to explain them, we must first review radioactive decay. 

Radioactive Decay 

All atoms of a given element have the same number of protons in their nucleus we call this number the atomic number. However, not all atoms have the same number of neutrons in their nucleus. Therefore, not all atoms of a given element have the same atomic weight (roughly, the number of protons plus neutrons). Different versions of an element, called isotopes of the element, have the same atomic number but a different atomic weight. For example, all uranium atoms have 92 protons, but the uranium-238 isotope (abbreviated 238U) has an atomic weight of 238 and thus has 146 neutrons, whereas the 235U isotope has an atomic weight of 235 and thus has 143 neutrons. Some isotopes of some elements are stable, meaning that they last essentially forever. Radioactive isotopes are unstable in that eventually, they undergo a change called radioactive decay, which converts them to a different element. Radioactive decay can take place by a variety of reactions that change the atomic number of the nucleus and thus form a different element. In these reactions, the isotope that undergoes decay is the parent isotope, while the decay product is the daughter isotope. For example, rubidium-87 (87Rb) decays to strontium-87 (87Sr), potassium-40 (40K) decays to argon-40 (40Ar), and uranium-238 (238U) decays to lead-206 (206Pb). In some cases, decay takes many steps before yielding a stable daughter. Physicists cannot specify how long an individual radioactive isotope will survive before it decays, but they can measure how long it takes for half of a group of parent isotopes to decay. This time is called the half-life of the isotope. 

Figure above (a-c) can help you visualize the concept of a half-life. Imagine a crystal containing 16 radioactive parent isotopes. (In real crystals, the number of atoms would be much larger.) After one half-life, 8 isotopes have decayed, so the crystal now contains 8 parent and 8 daughter isotopes. After a second half-life, 4 of the remaining parent isotopes have decayed, so the crystal contains 4 parent and 12 daughter isotopes. And after a third half-life, 2 more parent isotopes have  decayed, so the crystal contains 2 parent and 14 daughter isotopes. For a given decay reaction, the half-life is a constant.

Isotopic Dating 

Techniques Since radioactive decay proceeds at a known rate, like the tick-tock of a clock, it provides a basis for telling time. In other words, because an element’s half-life is a constant, we can calculate the age of a mineral by measuring the ratio of parent to daughter isotopes in the mineral. In practice, how can we obtain an isotopic date? First, we must find the right kind of elements to work with. Although there are many different pairs of parent and daughter isotopes among the known radioactive elements, only a few have long enough half-lives, and occur in sufficient abundance in minerals, to be useful for isotopic dating. 

Table above lists particularly useful elements. Each radioactive element has its own half-life. (Note that carbon dating is not used for dating rocks because appropriate carbon isotopes occur only in organisms and radioactive carbon has a very short half-life). Second, we must identify the right kind of minerals to work with. Not all minerals contain radioactive elements, but fortunately some fairly common minerals do. Once we have found the right kind of minerals, we can set to work using the following steps. 
  • Collecting the rocks: We need to find un-weathered rocks for dating, for the chemical reactions that happen during weathering may lead to the loss of some isotopes. 
  • Separating the minerals: The rocks are crushed, and the appropriate minerals are separated from the debris. 
  • Extracting parent and daughter isotopes: To separate out the parent and daughter isotopes from minerals, we can use several techniques, including dissolving the minerals in acid or evaporating portions of them with a laser. 
  • Analyzing the parent-daughter ratio: Once we have a sample of appropriate atoms, we pass them through a mass spectrometer, an instrument that uses a strong magnet to separate isotopes from one another according to their respective weights (figure below). The instrument can count the number of atoms of specific isotopes separately. 


At the end of the laboratory process, we can define the ratio of parent to daughter isotopes in a mineral, and from this ratio calculate the age of the mineral. Needless to say, the description of the procedure here has been simplified in reality, obtaining an isotopic date is time-consuming and expensive and requires complex calculations.

What Does an Isotopic Date Mean? 

At high temperatures, atoms in a crystal lattice vibrate so rapidly that chemical bonds can break and reattach relatively easily. As a consequence, isotopes can escape from or move into crystals, so parent-daughter ratios are meaningless. Because isotopic dating is based on the parent-daughter ratio, the “isotopic clock” starts only when crystals become cool enough for isotopes to be locked into the lattice. The temperature below which isotopes are no longer free to move is called the closure temperature of a mineral. When we specify an isotopic date for a mineral, we are defining the time at which the mineral cooled below its closure temperature. With the concept of closure temperature in mind, we can interpret the meaning of isotopic dates. In the case of igneous rocks, isotopic dating tells you when a magma or lava cooled to form a solid, cool igneous rock. In the case of metamorphic rocks, an isotopic date tells you when a rock cooled from a metamorphic temperature above the closure temperature to a temperature below. Not all minerals have the same closure temperature, so different minerals in a rock that cools very slowly will yield different dates. Can we isotopically date a clastic sedimentary rock directly? No. If we date minerals in a sedimentary rock, we determine only when these minerals first crystallized as part of an igneous or metamorphic rock, not the time when the minerals were deposited as sediment nor the time when the sediment lithified to form a sedimentary rock. For example, if we date the feldspar grains contained within a granite pebble in a conglomerate, we’re dating the time the granite cooled below feldspar’s closure temperature, not the time the pebble was deposited by a stream.

Other Methods of Determining Numerical Age


The rate of tree growth depends on the season. During the spring, trees grow rapidly and produce lighter, less-dense wood, but during the winter trees grow slowly or not at all, and produce darker, denser wood. Thus, wood contains recognizable annual growth rings. Such tree rings provide a basis for determining age. If you've ever wondered how old a tree that’s just been cut down might be, just look at the stump and count the rings. Notably, by correlating clusters of distinctive rings in the older parts of living trees with comparable clusters of rings in dead logs, scientists can extend the tree-ring record back for many thousands of years, allowing geologists to track climate changes back into prehistory. Seasonal changes also affect rates of such phenomena as shell growth, snow accumulation, clastic sediment deposition, chemical sediment precipitation, and production of organic material. Geologists have learned to use growth rings in shells, as well as rhythmic layering in sediments and in glacial ice (figure above a–c), to date events numerically back through recent Earth history.