Carbonate Petrography

Carbonate petrography is the study of limestones, dolomites and associated deposits under optical or electron microscopes greatly enhances field studies or core observations and can provide a frame of reference for geochemical studies.

25 strangest Geologic Formations on Earth

The strangest formations on Earth.

What causes Earthquake?

Of these various reasons, faulting related to plate movements is by far the most significant. In other words, most earthquakes are due to slip on faults.

The Geologic Column

As stated earlier, no one locality on Earth provides a complete record of our planet’s history, because stratigraphic columns can contain unconformities. But by correlating rocks from locality to locality at millions of places around the world, geologists have pieced together a composite stratigraphic column, called the geologic column, that represents the entirety of Earth history.

Folds and Foliations

Geometry of Folds Imagine a carpet lying flat on the floor. Push on one end of the carpet, and it will wrinkle or contort into a series of wavelike curves. Stresses developed during mountain building can similarly warp or bend bedding and foliation (or other planar features) in rock. The result a curve in the shape of a rock layer is called a fold.

Showing posts with label plate tectonics. Show all posts
Showing posts with label plate tectonics. Show all posts

Geologic Contacts

A geologic contact is where one rock type touches another. There are three types of geologic contact:1. Depositional contacts are those where a sedimentary rock (or a lava flow) was deposited on an older rock
2. Intrusive contacts are those where one rock has intruded another
3. Fault contacts are those where rocks come into contact across fault zones.
Learn in detail about fault here

Following are the some pictures showing each type of geologic contact

Depositional Contacts

1. Angular Unconformity, Siccar Point, Scotland

This place is known as Siccar Point which is the most important unconformity described by James Hutton (1726-1797) in support of his world-changing ideas on the origin and age of the Earth.
Here 
gently sloping strata of 370-million-year-old Famennian Late Devonian Old Red Sandstone and a basal layer of conglomerate overlie near vertical layers of 435-million-year-old lower Silurian Llandovery Epoch greywacke, with an interval of around 65 million years.


2. Cretaceous Sandstone overlying Conglomerate    Kootenai Formation, SW Montana

Photo Courtesy: marlimillerphoto.com

3. Dun Briste Sea Stack, IrelandDun Briste is a truly incredible site to see but must be visited to appreciate its splendour. It was once joined to the mainland. The sea stack stands 45 metres (150 feet) tall.

Dun Briste and the surrounding cliffs were formed around 350 million years ago (during the 'Lower Carboniferous Period'), when sea temperatures were much higher and the coastline at a greater distance away.  There are many legends describing how the Sea Stack was formed but it is widely accepted that an arch leading to the rock collapsed during very rough sea conditions in 1393. This is remarkably recent in geological terms

Photo Courtesy: dunbriste.com 


Fault Contacts

1. Normal Faulting in the Cutler Formation near Arches National Park

Photo Courtesy: travelinggeologist.com

2. Normal Fault in Titus Canyon, Death Valley, California 

Photo Courtesy: travelinggeologist.com


3. 
Horst and Graben Structure in Zanjan, Iran

Photo Courtesy: Amazhda

Intrusive Contacts 

1. 
Pegmatite and aplite dikes and veins in granitic rocks on Kehoe Beach, Point Reyes National Seashore, California.


2. Spectacular mafic dyke from Isla de Socorro from Pep Cabré. The Isla de Socorro is a volcanic island off the west coast of Mexico and it is the only felsic volcano in the Pacific Ocean

Photo Courtesy: travelinggeologist.com

3. The margins of this Granite dyke cooled relatively quickly in contact with this much older Gabbro.
Photo near Ai-Ais Namibia

Photo Courtesy: travelinggeologist

Continental Accretion and Plate Tectonics Model

Continental Accretion

Accretion is a process by which material is added to a tectonic plate or a landmass. This material may be sediment, volcanic arcs, seamounts or other igneous features, or blocks or pieces of continental crust split from other continental plates. Over "geologic time" (measured in millions of years), volcanic arcs form and may be crushed onto (or between) colliding continents with plate boundaries. Pieces of continental land masses may be ripped away and carried to other locations. For instance, Baja California and parts of southern California west of the San Andreas Fault are being ripped away from the North American continent and are slowly being carried northward. These rocks may eventually pass what-is-now San Francisco, and perhaps 70 to 100 million years from now will be crushed and accreted into the landmass currently known as Alaska!
Plate tectonics model: 
Subduction introduces oceanic crustal rocks (including sediments) back into the Asthenosphere. Water and gas helps low-temperature minerals to melt and rise as, forming new continental crust (less dense than oceanic crust). Floating on the Asthenosphere, the continental crustal materials accumulate, forming continents.

Plate Tectonic Model
Photo Courtesy: Phil Stoffer


The processes associated with subduction lead to the accretion (growth) of continents over time. As ocean crust is recycled back into the upper mantle, the lighter material "accumulates" along continental margins. Pieces of lithosphere are sometimes scraped off one plate and crushed onto and added to another plate.  
 

refining
Photo Courtesy: Phil Stoffer